Like many GA pilots, I learned the “pitch for airspeed, power for altitude” (Navy) method of flying. Soloing in a Taylorcraft, owning a Champ and flying gliders (no extra power) initially enforces this paradigm. And the ancient FAA AC recommending this paradigm (61-50A) is actually still in effect promoting this control method.
The “big iron” (Air Force) answer to aircraft control is exactly the opposite (lots of power available) “pitch for altitude and control speed with power.” Ironically, either paradigm will actually work “most of the time,” but both will also fail in various configurations (Stricklin crash at Mt. Home)
A much more effective – smoother and safer – method of aircraft control is “comprehensive energy management.” “Energy management” has appeared in the FAA testing standards for many years, but only recently, with the new Chapter Four in the Airplane Flying Handbook, do we have solid FAA guidance on how to apply (and teach) this method of control (see also the excellent AOPA article HERE and Ed Kolano).
Your student is low and fast on their final. You burned into their brain “pitch for airspeed” so the power comes in to correct (low) and the plane obediently regains the glide slope (and more). Since we are fast, (and now high too) the student pitches up to correct that; and an unstable dance of rote responses ensues.
Low and fast is a simple “energy management (EM)” issue fixed by a little back pressure (pitch); a comprehensive EM solution provides a smoother, faster and safer result. High and slow same, pitch to fix. Low and slow needs more total energy (power) as does fast and high. So the answer to the pitch/power debate is (in the center of the maneuvering envelope) is “it depends!)
Instead of providing (applying) dogmatic absolutes for glidepath or speed correction, the savvy educator starts with “your control usage depends on your energy status.” Refer to the clever four-part diagram below as an essential starting point for learning (or teaching) this method. Hopefully, this diagram will start appearing in initial CFI lesson plans?
The first step in control is maintaining an awareness of the aircraft’s “total energy.” Excessively high and fast or low and slow requires power management (total energy adjustment). Excessively high and slow or low and fast requires pitch management (energy transfer). Most configurations in between require a pitch and power combination depending on the specific desired performance. This comprehensive (correlative) energy paradigm results in much smoother and safer flying. I have also found that teaching in this manner results in much faster and more accurate student progress (old dog learns new tricks).
A “power-off 180” is not what we want in an emergency – no “safety margin.”
Very often in training (and flight tests) what we see if we simulate an engine failure on the downwind is some version of the “commercial 180” accuracy landing aimed at the end of the runway. This is the wrong maneuver for a real emergency situation (common confusion though). What if we misjudge our energy and end up short of the emergency field? There is no safety margin here or recovery option; game over, no replay! The lack of any extra energy (altitude only please) also precludes any final optimization of the touch-down point on a short final.
In an emergency landing scenario, we absolutely must “make the field” and there are two very common errors in training and flight tests that assure failure. The first error is a huge non-standard pattern usually with a five-mile final. Instead, step one is “go directly to the field” then spiral down (over the field) to a normal downwind position (familiar picture, predictable results). Step two is to aim toward the middle of the field with normal approach speed. You already “made the field” with the downwind key position, we now want to make this as “normal” as possible. The two differences are aim to the middle and reserve the last flaps (and the option of a slip) to “dump energy” (extra altitude not extra speed) at the last moment to optimize the precise touchdown point.
Only on a short final will you detect last-minute obstacles like ditches and wires. The extra altitude (energy) permits some optimization of your intended crash site. BTW: In these situations, most people visualize a “landing” but this will usually be rough – a “crash!” Your plane will probably not roll far at all in vegetation or rough terrain and flipping over is common in high-wings. Mentally visualizing a “survivable crash” will better focus your attention on tightening the belts, shutting down the plane, and assuring a safe exit. Fly safely out there (and often).
The follow-on SAFEblog was written by Rich Stowell applying "first principles" to this endless pitch/power debate (very helpful). In the final analysis (and when out of the center of the maneuver envelope), a different mental model is useful (how every aerobatic pilot flies...) See this blog.
SAFE is everywhere at #OSH22. Our booth is in the Bravo Hangar #2092/3 and the SAFE dinner is on campus at the EAA Partner Resource Center. All readers of this blog are invited to dinner; tickets here!
A
ll readers of this blog are also invited to enter the SAFE sweepstakes! Prizes include a Lightspeed Zulu 3, Aerox O2 system), SPorty’s PJ2)



Tell us what *you* think!