Buffering “FAA Minimums” Aim For Excellence!

The FAA only specifies the absolute minimums (limitations) in their regulations and these are not recommended operating specifications.  This might sound silly to many pilots, but some people have not gotten this memo.  As one example, “one mile visibility and clear of clouds” in Class G airspace is an absolute legal minimum. All of aviation safety involves building (and maintaining) a personal margin above these FAA bare minimums. Minimum weather, fuel requirements, and even hours for pilot certification should have a margin applied to be safe and build better pilots.

I have been giving a lot of private checkrides lately and obviously a private pilot applicant must know Class G airspace and the basic legal weather minimums. But if they tell me they would go flying in this scary weather, they are not adequately managing risk. Similarly, FAA minimum flight instrumentation (day and night) requires only an airpseed indicator, altimeter (not even adjustable) and a compass. Again, every pilot should know this legal minimum, but should also be aware such primitive guidance is not adequate for most flights (especially at night). Building a margin by requiring more complete instrumentation, equipment, preparation and suitable weather is the basis for managing risk and building safety.

This paradigm of “FAA minimums vs safety margin” is an excellent method to understand (and teach) a risk management system (required in the FAA testing standards). Although a pilot applicant at any level must know the FAA minimums, they must also clearly define their personal “safety margin” for their  level of experience in a particular plane, environment and with unique external pressures of the situation. What examiners want to hear is “my thinking and safety margin in this situation is…”

The ACS defines specific areas to be considered when managing risk. This was developed straight out of the military’s “man, machine and mission” formula and is expanded and elucidated in the FAA Risk Management Handbook. P-A-V-E identifies the Pilot, Aircraft, EnVironment, and External Pressures that interact dynamically to cause (or mitigate) risk factors. Unfortunately, this subject is still given prefuctory coverage by many CFIs as they initially educate pilots or prepare them to take flight tests. In my opinion, this paradigm should be the primary vehicle used right from “day one” to expose new pilots to aviation. (Instead of a rarely mentioned “nice to know” addition “don’t forget risk management”)  Much of our aviation education system is still mired in the 1940s military curriculum of lesson planning. We need a cultural change that puts risk management as more central in our aviation education. P-A-V-E is an amazing safety tool for your personal flying and instructional focus.

And speaking of minimums, the current “rush to ratings” clearly is eliminating any “extras” and fun in the flight training experience. The required 5 hours of solo X-C for the private pilots now seems to often only involve one long flight on a very nice day. When I see a pilot applications with absolute minimum hours all I can think is “don’t you like flying?” Can’t we add a little more than the absolute minimum experience and build a margin of safety here too? Exposing students to more than one X-C flight or working with  more crosswind allows them to experience and internalize different weather, expand personal capacities and enhance their skills for a greater safety margin. They are going to need these hours and experience in the future anyway.

Screen Shot 2019-08-24 at 3.13.17 PM

The “minimums trap” seems to be increasingly common in pilot testing too, where applicants just just aim to pass with a minimum grade rather than striving for excellence. A 70% seems to make people happy and “mediocre” is too common in the current rush for ratings. But as proud safe pilots, our whole system of superior safety and professionalism is built on trying harder and striving for the best we can be. There is real safety value and satisfaction in exceeding the minimums and pursuing more comprehensive knowledge and skill when we aim for excellence. Fly safely out there (and often)!


Our SAFE CFI-PRO™ workshop covers the whole extended envelope catalog and application to both initial and recurrent training. We also cover “client-focused” flight training to combat the 80% drop out rate in initial flight training.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (1/3 off your ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitate CFI+DPE teamwork. Our CFI insurance was developed by SAFE specifically for CFIs (and is the best value in the business).

WANTED: Angle of Attack Managers

This is one in a series of posts by special guest authors about SAFE’s new CFI-PROficiency Initiative™ (aka SAFE CFI-PRO™). The goal of the initiative is to make good aviation educators great!

Aviators, airmen, aviatrices—a few of the other words used to describe pilots. Yet none of these words reflect what we really do. Ultimately, pilots are angle of attack managers. Let’s have another look at AOA.

As David St. George notes in “Invisible Angle of Attack,” AOA is the difference between where the airplane is pointing and where it is going. Wolfgang Langewiesche describes the importance of AOA thus:

“If you had only 2 hours in which to explain the airplane to a student pilot, [AOA] is what you would have to explain. It is almost literally all there is to flight. It explains all about the climb, the glide, and level flight; much about the turn; practically all about the ordinary stall, the power stall, the spin. It takes the puzzlement out of such maneuvers as the nose-high power approach; it is the story of the landing.”

AOA implies two things: wind and an object around which the wind is flowing. Most everyone has played with AOA before. Remember sticking your hand out of the car window when you were a kid? What happened when you tilted your hand into the oncoming wind? “It went up!” is the common response. Reflect more deeply on the experience, however, and you’ll notice that your hand actually moved upward and backward. If we want to get technical about it, we could call the “up” part Lift and the “back” part Drag.

We’ve all seen examples of unusual things being forced to fly, too. For example, tornado-strength winds can cause even the most reluctant Holstein to go airborne.

A high velocity jet of air precisely aimed at a Snap-on screwdriver can cause it to hover (courtesy of SAFE member Shane Vande Voort—please don’t try this at home!).

And though we might describe a wing as having a “top” and a “bottom,” Lift- and Drag-producing AOAs are possible on either side.

AOA is discussed primarily in the context of the airplane’s main wing. But at the correlation level of learning, we see the entire airplane as an assembly of wings all of which are subject to the principles of AOA. The propeller, for instance, is a rotating wing. Main and jury struts are often symmetrical wings streamlined to minimize drag. “Aileron” is French for “little wing.” And our primary flight controls are AOA controls. The elevator controls the AOA of the main wing (aka pitch control).

Ailerons control local AOAs (typically the outboard part of the wings, aka roll control).
Rudder controls the AOA of the fuselage (aka yaw control).

Our job as instructors is to teach our trainees how to manage these AOAs to achieve desired performance outcomes. Although AOA itself may be invisible, changes in AOA can be sensed and its trend interpreted. In the visual flight environment, this means coupling aeronautical knowledge with sight, sound, and feel to manage our controllable AOAs.

Before we climb into the airplane, for example, we know that the combination of a high power setting and a slow airspeed during the takeoff phase will yaw the airplane. But we want coordinated flight during this particular takeoff. That will require a certain amount of rudder to manage the AOA of the fuselage to cancel the yaw. What does yawed flight look like during takeoff? What does it sound like? What does it feel like? What does it look and feel like if we try to use aileron to correct for the yaw instead of rudder? All of these questions can be explored in the practice area without staring at the slip/skid ball. The lessons learned can be applied during subsequent takeoffs.

Whether it’s pitch, roll, or yaw, changes in AOA manifest as changes in one or more of the following: attitude, G-load, control pressure, control displacement, and often sound. In the case of elevator inputs, add airspeed to the list of cues.

For fun, test your understanding of AOA with the following thought experiments. Imagine you are at an airshow watching a competent aerobatic pilot fly a capable aerobatic airplane.

1. The airplane makes a knife-edge pass from your right to your left at precisely 90 degrees angle of bank.
a. Where is the nose of the airplane pointing relative to its flightpath, and how is the pilot making that happen?
b. What is the pilot doing with the elevator to make the airplane fly down the runway?
c. What is the AOA of the main wing?
d. What is the pilot feeling?

2. The airplane climbs along a perfect vertical line.
a. In order to remain on the upline before pivoting in a Hammerhead, what is the pilot doing with the elevator?
b. Ultimately, what is the AOA of the main wing during the upline?

Want to learn more ways to push learning to the correlation level? Attend SAFE’s inaugural CFI-PRO™ workshop in Frederick, MD on October 2–3, 2019!

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (1/3 off your ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitate CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

The Secret of Pattern Safety!

We all know a majority of accidents occur in the traffic pattern; especially during descent and runway line-up. But the burning question is “why?” Basically, we fear the wrong things. Most pilots don’t understand the basic flight dynamics of descending turns and the real consequences and risks of unstabilized flying. With a little knowledge, practice and a committment to artful flying excellence, we all can do better and fly safer.

But instead pilots try to achieve safety by never banking over 20 degrees, flying huge patterns and becoming increasingly timid.  Others advocate oval patterns to eliminate the steeper corners of the pattern (but fly a constant turn). Why not just “learn to turn” correctly and safely in the first place? I watch in amazement as pilots horse their planes around to final with varying bank angles and wildly changing airspeeds (hold on partner!) exhibiting a lack of stability, ground track control and overall discipline. The physical problems with patterns are obvious but they are driven by a lack of understanding risk and knowledge of the forces at work.  This lack of stability and control continues directly into professional piloting where unstable approaches and overrun accidents are the #1 cause of accidents in corporate jets. As aviation educators (and pilots) we need to do better. Understanding some basic flight dynamics is critical to success.

Safety and a passion for pattern precision starts with an understanding of the invisible angle of attack (AOA) where the real risk hides. Simply presenting and thoroughly explaining  a set of pictures like the ones above  can jump start the conversation and clear up some very common misunderstandings. When asked which aircraft depicted above has the greatest angle of attack (AOA) almost every pilot (and many CFIs) pick the nose-high Cessna. The “a-ha” learning opportunity is that the AOA is the same on both of these aircraft. And that means the airplane in the glide is just as close to a stall as the nose-high plane on the left (now risk becomes clear). If we never demonstrate a stall with the nose *below* the horizon a new pilot in training will never understand AOA and how accidents occur. There is a “natural” (but erroneous) assumption that with the nose low, we are “safe” and “all stalls occur with a nose-high flight attitude” – wrong and reason #1 for pattern accidents! Even if this error is not stated verbally, practicing and demonstrating only nose-high stalls builds this myth and masks the true danger of descending turns.

In our initial flight instruction teaching the basic level turn, we emphasize that when a plane is banked, the lift vector is redirected to the horizontal (to create the turn) and no longer entirely opposes gravity. Consequently, some back-pressure is necessary to maintain altitude in a level turn. And during initial flight training, we build up this rote, muscle memory “bank and add pressure” response through repetition. But when we move on to the descending turns, is essential to emphasize this previously memorized script is incorrect.

A descending turn is completely different and requires “bank and release” because the added load of the bank will add drag and cause a decrease in airspeed (and greater AOA) unless back pressure is relaxed (and trim is a wonderful and underused tool here). Pilots descending tend to lose airpseed on every turn; they are banking and inappropriately adding back pressure (or failing to appropriately release). This is reason #2 of the “why” that explains many pattern accidents. This failure to understand the basic flight dynamics of the turn and AOA (also probably add some initial “ground fear” of being low) causes pilots in training bank to mishandle AOA. And once bad habits are extablished in training, they never go away.

How “eyeball friendly” is your trainer?

Outside visual reference and proper trimming are also vastly undervalued in modern flight training. If the airplane is trimmed properly and the pilot in training knows the proper, predictible flight attitude for a descent in various configurations, the stabilized control of the aircraft is much easier. Unfortunately, many pilots in training are inappropriately focused inside on the panel chasing the airpseed indicator instead of setting a flight attitude with outside references. Personally, unless my pilot in training can fly the whole pattern visually, with eyes outside (and the instrument panel covered) I hesitate to even consider a solo. Fly safely out there (and often).


And of course, more on this and other key educator tools at our Oct. 2/3 SAFE CFI-PRO™ workshop at AOPA in Fredrick, MD. The registration form will be live in a week. This will have Hilton and Marriott rooms at a discount and a networking dinner at the National Aviation Community Center!

Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

Start With Basic Honesty!

As a flight instructor have you been guilty of telling eager beginners that “learning to fly is easy”? Do you personally really believe that often used phrase? If you think back to *your* initial training don’t you remember those dark moments of discouragement and disappointment that are inevitably part of this process? Learning anything complex is not all sunshine and light. Struggle, disappointment and personal growth are all a necessary part of learning to fly. But if you were successful, at some point some caring person helped you through those  dark times of doubt – a mentor or hopefully a compassionate, honest aviation educator? We know from survey data that a caring and compassionate CFI is  the essential magic element responsible for success in flight training. In our enthusiasm to sell flying we might be doing damage by describing learning to fly as “easy.” I think we all would benefit more by being honest; the result would be a better completion rate and more happy pilots in training. This would help to insure the health of our aviation industry and give us many more lifetime clients.

In our eagerness to sell flying we have  failed our future pilots- it all starts with that initial interview. I personally believe this is a major reason we see the 80% rate during initial pilot training; we need to more accurately communicate the challenges and control the expectations here.  Present the honest story, with the future benefits.  Certainly “sell the sizzle” but do not diminish the challenges.

My personal formula for introducing the subject goes something like this; “Learning to fly is a great challenge and provides amazing adventure and fun. This process does require hard work, effort and your time and money. In addition to acquiring the obvious physical skills it also requires personal growth and assuming responsibility; it rewards a ‘take charge’ personality and some courage. Your investment of time, money and effort will be paid back a hundred fold if you stay the course and work through the process; being a pilot opens up so many worlds of fun and adventure. And the learning and discovery can be fun and rewarding; we’ll work through the difficulties together”

The professional aviation educator has to commit to being more than just a technician in this learning process. A great CFI is a coach, motivator and practical psychologist in addition to guiding the skills part (did you know you signed up for this?). If you are a pilot seeking a CFI look beyond the badges, patches and accolades. Look for a true committed professional, a warm-hearted “people person” who cares about your success and has a track record of happy pilots.

50KsoloEvery initial interview between potential pilot and educator is similar to an “engagement letter” that any lawyer would write.  This tool should be part of any professional relationship involving a lot of time and money (and its usually in writing). Unfortunately in flying, honesty is rare, we tend to sell sunshine and light and diminish the struggle. And if we present the FAA “40 hour myth” we are also lying. I have certainly finished some very talented students in 35 hours (141 school), but we all know that is not the “average” and not an expectation I would promote to the general public. Doubling the 40 is a more reasonable target (and I don’t embrace other FAA minimums – like VFR in “one mile clear of clouds” either). Someone for whom completion is not possible (or will take excessive time) should be informed early in training (and gently terminated if the project is not going to work). Again AOPA survey data reveals that the reason people drop out of flying is not the cost, it is the unrealistic expectations presented in the early interview and a lack of value. If you initially told them $12K to be a pilot and we are passing $18K and still in X-C you are going to have problems. This is no different than  remodeling contractor promising your new bathroom for $20K then proceeding to charge $35K (and its still not done).

The critical part in flight training that differs from other professional models is the level of personal commitment and caring required of the effective aviation educator. We are not just technicians who perform a sterile service or twist a few screws to create a performance. We need to be personally involved and coaching our pilots in training to get them through the goal posts. It requires caring and compassion and that is rare in our modern world of aviation instruction. I don’t think they teach empathy or compassion during initial training at our “puppy mill” CFI academies. This is acquired with life experience and comes with time. But it is the essential trait if you want to be a successful aviation educator; you have to care. This is the magic that makes flight training work. Fly safely out there (and often)


Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

“Artful” Control Usage; Pattern Precision

Rudder use in climbing turns is critical to safety in the pattern!

Flying around the pattern with perfect coordination is more difficult than most pilots think. Its also essential to safety because this is where the majority of accidents happen either from collisions or loss of control. Aviation educators must be insistent on thorough understanding and proper control usage if we are going to make better, safer pilots.

The correct actions and control pressures required in the pattern often go against what initially seems “natural” to new trainees; their “naive rendition.” Aviation educators need to patiently unpack and overwrite naive assumptions with correct theory and control usage. These are “trained responses” and require lots of practice to become embedded, implicit scripts that are constantly ready for use by the savvy pilot. There are lots of negative transfers from our more common transportation activity; driving.

Every educator will get arguments that mastering the correct control application is unnecessary because what they are doing “already works” or they will correct sloppy control later; neither is true. The basics must be mastered early and practiced often in flying or you have embedded a ticking bomb in your procedures that will surface later when a critical surprise situation requires immediate and accurate control skills to save the day. Marginal performance from power loss or density altitude challenges can suddenly require us to squeeze every ounce of performance from our aircraft. For safety and efficiency we need to unpack some of these less studied effects and work to master correct coordination.

A common example of “instinctual control” is seen in new pilots on initial power application and rotating to climb for take-off. These new learners counter left yawing tendencies with aileron;  a powerful negative transfer from driving. Many experienced but rusty pilots still exhibit a trace of this incorrect control input. Correctly canceling the yaw with rudder is a trained response that has to overwrite “intuition” and driving habits through continual reinforcement. With practice, the nose should rise straight and steady to a know climb attitude with outside reference and rudder pressure canceling yaw. (Extra points are awarded for not wagging left and right as the climb progresses) As the plane leaves the ground and starts climbing, some even more subtle control pressures are necessary to stay coordinated.

After rotation the pivot point for elevator shifts from the wheels to the CG point (forward of the wing) so a release of back pressure (lower nose) is required (nosewheel plane). Additionally, the increase of induced drag upon leaving ground effect requires a subtle relaxing of back pressure. The proper climb picture required should be memorized and acquired with visual outside reference. The view outside will also allow a pilot to see that left aileron is necessary to keep the wings level in the climb. Right rudder pressure causes a proverse roll to the right (more prominent in some planes than others). This subtle force surprises even experienced pilots when it is pointed out. Climbing coordinated requires some cross control pressure to keep the ball centered and the wings level; “cross-coordinated.” In the proper configuration, most planes exhibit 15% greater climb rate when correctly coordinated on the takeoff since they are stramlined and more efficient. (Try gliders to experience how necessary proper coordination is to performance) Though 300-700 HP can pull almost anything airborne even sideways, bad coordination in emergency situations is the killer. It is amazing that 24% of fatal accidents occur on the take-off and initial climb. Many pilots just don’t value all the challenges here – “hard to miss the sky!”

During the initial high-power, low-speed climb, most singles require right rudder pressure to center the ball. This induces a right rolling moment. Left aileron input against the right rudder is subtle but necessary to keep the wings level as the ball is centered. Once the plane is “subtly cross-controlled” in this manner, it will climb much better because drag is minimized.

The standard left crosswind turn in the patterm  is an even greater challenge to keep properly coordinated for new pilots; right rudder is required! Recent accident data indiates the climbing crosswind turn in the pattern may be even more dangerous than the well known base-to-final turn. Pilots turning left in a climb usually don’t apply the proper right rudder pressure to cancel the prominent left-turning forces since is initially “so unnatural.” As mentioned in many of these blogs, flying well requires many counter-intuitive trained actions to be safe. Remember, since both wings have equal lift in a stabilized turn, and the left-turning tendencies are still present and require right rudder – we are still climbing! Unfortunately, many pilots skid around their left climbing turns (standard right-hand patterns would be safer for control). Pilots who have tried chandelles – a more extreme climbing turn – are very familiar with the cross-coordination concept here. But even in less extreme left crosswind climbing turn, right rudder is essential. But why is flat-footed flying dangerous here?

In skidding turns, the force of roll and yaw are both acting in the same downward direction; they are coupled and adverse in effect – pro-spin. And when pilots inappropriately counter this skidding force in a climbing left turn with more aileron, this incorrect control application increases the angle of attack on the lower, slower wing. This makes the lower wing more likely to stall first and tuck into a spin. This illustration from Bold Method provides a depiction of the many problems with a skidding turn. Correct control application must be taught relentlessly by a committed aviation educator and studied carefully by the pilot in training to become an embedded habit. And this is particularly hard to master since it is a llearned action that is initially completely counter-intuitive. But anything less is clearly unsafe.

The skidding turn seems to be always depicted in a nose low, base-to-final turn in the pattern. This is where pilot action creates the skid with rudder to inappropriately increase the rate of turn. But you will see far more skidding turns in a climbing left turn if you pay attention. The skid here only requires pilot inaction. All the powerful left-turning tendencies create the skid that must be corrected by pilot action. These left-turning forces must be actively countered with right rudder to prevent a skid. This dangerous tendency is especially common in bigger planes and more powerful engines in the climbing turns. Do the math and you can discern that this is often demonstrated by the “captain of industry” – an affluent step-up client who bought a big new plane. This person is allegedly a “trained pilot” but often really requires remedial instruction to be safe. The professional aviation educator must be firm here to address and fix these coordination problems. Acquiescing to poor control or bad technique is unprofessional and unsafe; it’s how we are losing control in our aircraft every day. Fly safe out there (and often)!

An appreciative nod to Michael Maya Charles and his amazing book “Artful Flying” (SAFE members get 20% off) which continues to inspire me daily. Flying well is more than just being safe. It is the daily joy of pursuing excellence in aviation; flying artfully!

 

 


Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

Teaching Landings More Effectively!

I recently spent a beautiful evening watching students in the pattern challenging their young instructors and abusing their aircraft. Almost every approach was clearly defective long before getting anywhere near the runway; inconsistent configuration, altitudes or ground track; and poor airspeed control with “lucky line-up.” Despite all these obvious problems they all continued to an “arrival” that also kept the lawn mowing crew nervously looking over their shoulders. Without any mastery of the critical sub-components necessary for landing they continued grinding out (and reinforcing) more errors all the while beating up the equipment and hoping for some kind of magical improvement – remember that definition of insanity? And 56% of accidents occur in the pattern – where we spend only 5% of our time. This lunacy also discourages and drives away many students with an assault on their self-worth and sanity. There is an easy remedy here and it is not complicated. It does however require a “culture change” (which can be difficult). We need to teach landings later  in training – and only after full mastery of the required basics. And instead of only teaching landing in their final form, try some “centerline slowflight.”

The common joke among flight instructors is that the only maneuver we actually teach is landing. This is partly because (if we are honest) most pilots are unable to consistently land well (except me?) But this joke is also true because “landing well” incorporates almost every aircraft control skill – plus judgement and risk management- with time pressure, low altitude and ego. Ironically, the critical importance and focus on landing also results in landings being taught very poorly during initial training.

Most schools and instructors teach landings way too early and only in their final form. They begin landing before the individual components have been mastered by the pilot in training. Usually this is a misguided attempt to motivate the pilot in training and demonstrate “fast progress” and success. But many times there is a worse motivator;  an ego-boost for the instructor or image-builder for the school demonstrating low-hour “success” (scare quotes because the specious low standard).  Unfortunately what usually happens is that the new duty of the CFI becomes “protecting the plane” while the student “figures it out” with a series of frustrating “hints and near misses” that I was witnessing. Is it any surprise young CFIs run for the airlines? Is it any surprise 80% of students drop out?

Dishonesty in teaching landing often starts on the first flight (and with the best intentions).  We have all heard (or said) “You landed on that Discovery Flight – See how simple that was?” (I once thought this was helpful myself- duh!) This dishonesty actually seriously damages the total process of learning to fly and results in many problems later. It can actually be a major cause of students quitting; “If it is simple why can’t I get it? – I must really suck at this!” It is so much better to begin the flight training relationship by honestly stating “learning to fly well requires hard work and commitment but the satisfaction and payback are incredibly worth the effort. Landing well is neither simple nor easy and pilots will probably spend the rest of their life mastering and refining this skill set.” We humans actually love challenges but only if there are clear, manageable steps and the results are demonstrably worthwhile (the *are* in flying). With proper guidance, students master landing more easily – in less time and ultimately more thoroughly – if they start later with “incremental mastery.

To start correctly, it is essential to carefully define and demonstrate that the objective of a “safe landing” looks like – on speed, on point in the proper landing configuration, etc. It is necessary to burn the media hype of “the greaser” and all that associated crap. Aim instead for a manageable, safe, landing with consistent, attainable, goals. A full explanation of all the skills and components gives motivation for working hard and incrementally mastering ground tracking, speed control and configuration changes when you are practicing together out of the pattern. Only after your pilot in training takes over all these essential components (see incremental mastery) are you are ready to begin “pattern work.” YOur pilot in training must earn landing practice by demonstrating mastery (not just because the clouds are low on the third lesson and the CFI has to pay rent). A relationship of trust in essential in this process because if your student imports all the crap they see on YouTube they will make this process longer and qeven more “exciting.”

Once in the pattern, I enforce the “rule of three”  – and transfer this to students as a necessary tool. This is simply calibrating the evaluation skills every good CFI already possesses. To be successful (and safe) the learner must see and remedy “high/low, fast/slow, not configured”  and terminate their attempt with a go around if necessary. The pilot in training must have evaluation skills too. There is absolutely no advantage to a continuing with a “salvage job” or accepting the landings I was watching. Even though the CFI is (usually) able to do salvage most landing attempts, we also fix way too many ugly landings for students and set a bad example. Whenever there are consistent deficiencies with basic aircraft control these issues need to be resolved before attempting further landings (otherwise we are practicing and reinforcing errors). It is essential to disassemble the bigger process (final form) into manageable elements that can be mastered safely at altitude then reassembled for success; e.g. once airspeed and ground track are functioning we can continue in the pattern productively.

Pilots in training master aircraft control at altitude first and progressively gain confidence and control at lower altitudes. Once slow flight has been mastered at altitude, bring it into normal pattern practice by flying down a long runway ground effect at approach speed. This is remarkable helpful and should occur before any landing practice with the specific goal of precise centerline control at progressively lower altitudes. In a few passes most students can track right down the line at 3-5 feet in ground effect (a skill that is still lacking after endless touch and goes) Achieving this kind of control through centerline slowflight is a trick used by every experienced aviation educator I know. Unfortunately, they usually only bring it out for “tough cases” as a “method of last resort.” YOu will be surprised how effective it is for every student (before landing practice).

Every CFI needs to be comfortable with centerline slow flight and it should be part of every normal student syllabus. This maneuver builds  confidence in your learner and overcomes “ground fear” for new pilots in training. It also builds the subtle control feel and visual cues for the bouancy of ground effect that contain 90% of the secret to effective landings. One huge psychological advantage to centerline slow flight is removing the expectation of landing that seems to be built into every pilot. Flying a series of low passes builds mastery of the go-around as a viable and safe “escape option.” This maueuver also saves wear and tear on the training aircraft and makes the subsequent teaching of a full landing a snap.

Once centerline slowflight is mastered, it is almost magical to train landing from a slow flight a lesson on a longer runway. Simply slowly reduce power as your pilot in training holds their sight picture in ground effect. Surprisingly your student has landed before they know it; tracking straight on the centerline without even expecting it. All you have to do is fully reduce power on touchdown ( a crutch you obviously want to later remove). It is simple to adapt and adjust this procedure to become a normal approach and landing. The steps now to landing are easy because all the necessary skills are there; no semi-crashes and “protecting the airplane” arrivals. How many pilots screw up landings because they are uncomfortable in ground effect or trying to “make it land” rather than “waiting for touchdown” with the perfect set-up? This and more useful techniques will be part of our  SAFE CFI-PRO™ Workshop at AOPA, October 2&3. Fly safely (and often)!

Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

 

Teaching “Invisible Angle Of Attack”

Angle of attack (AOA) is the most misunderstood concept in aviation – just raise the topic casually in a hangar flying session to sample the confusion. Our previous two blogs on tail-down force and the basics of a turn demonstrated the many scary gaps in the average pilot’s knowledge.  Some CFI somewhere has failed these pilots in training. Ignorance and misunderstanding, along with lack of solid skills are at the heart of many of our fatal loss of control accidents. Most pilots are fine and happy in the limited “comfort zone” of their 5% flight envelope, but terrified when forced by surprise events to maneuver. (I highly recommend Rich Stowell’s Emergency Maneuver Training to every pilot. This book will fill many “gaps” and is written in wonderfully clear language)

Controlling AOA is the central tool in the generation of lift and essential to everything we do as pilots defying gravity. Understanding and managing AOA is indisputably the most important knowledge and skill set we (should) learn as students. But unfortunately, if AOA exists at all in a pilot’s vocabulary it seems to represent only  the feared excess of the stalled condition. And even the simple stall is clouded in mystery and fear and hidden behind an over-reliance on technological protections. Now that  minimum controllable airspeed (MCA) has been removed from the private pilot ACS, educators often don’t teach this important skill and sample “the feathered edge” of critical AOA. Learning to maneuver in MCA not only teaches coordination, it teaches all the kinesthetic cues of the impending stall.

I have been privileged to own a 7AC Champ for the last 30 years. This plane has no stall warning device at all – and no blue button or “envelope protection” either. Demonstrating AOA and teaching stalls is so easy in a Champ or Cub (or glider); pilots in training learn it early and fairly painlessly. Add all the distractions of a technologically advanced airplane and the slow flight/stall process can take longer and be disguised by distractions. Don’t get me wrong, technology is wonderful and necessary in a “go fast” machine, but the physics of lift is identical and more easily learned in a simple plane.

Angle of attack is most commonly confused with flight attitude (an aircraft’s relationship to the horizon) but there is no relationship between AOA and attitude. I think this misconception is a deeply embedded “natural” human assumption. And it is essential to eradicate these misconceptions during flight training. This requires knowledge, demonstration and practice; but we often don’t get there. Any plane can be in level flight attitude and stalled, be pointed straight down and also be stalled (both exceeding the critical AOA). Air France 447 was a landmark case study of a very experienced crew mishandling AOA.

As illustrated above, in a still photo of an aircraft, you just can’t determine the AOA from the outside view; it is invisible. To discern AOA you need motion and trend; it is the difference between where the airplane is pointed and where it is actually traveling. And that is another good reason for a pilot to keep their eyes outside for more than infrequent glances; you need to see the trend to achieve control. If it’s going down out of control you need to unload and push it further down to recover. “Unloading” (reducing AOA – especially when nose down already) is so unnatural and at first it is incomprehensible to new pilots.

A secondary stall is a excellent tool to illustrate the difference between AOA and flight attitude and train unloading – the student is confused p“the nose is down below the horizon but the plane is stalling? How can that happen?” This initial confusion (cognitive dissonance) is a “learning opportunity” for full explanation, full understanding and training muscle memory in the learner. And here the aviation educator has to be patient and kind but also somewhat relentless in achieving understanding and proficiency (DPEs do not evaluate this skill on flight tests). If pilots do not fully grasp this “unload” concept, they will never be safe in emergencies.

 

My personal familiarity with AOA is largely from many hours of “dual given” watching people misunderstand and mishandle the physics of flight. And my passion is guiding them back to comfort, knowledge and control in their aircraft. But this takes commitment on both sides of this instructional relationship. Our natural human tendencies (called “naive rendition”) of how flight works is initially all wrong. Our intuition fails when it tries to “do physics.”

Everyone seems to “know” the nose high aircraft is “high AOA” (the crime of flight school demonstrations). But nobody seems to comprehend that a nose-low A/C can have an equally “high AOA” and be just as close to a stall (it mistakenly appears safe). The untutored knowledge that is “natural” to new pilots does not work and only gets worse when fueled by fear in an upset (pull away from the ground). Flying is largely applied physics and requires proper counter intuitive knowledge and understanding. Flight training is a careful process of discovery as we overwrite what humans intuitively guess is going on. And that takes trust and willingness on the part of the learner and requires a strong CFI/learner relationship to work through these issues completely – also rare.

After many years of flying and teaching, we know most people can drive a plane down the center of the flight envelope with very little guidance  – “look mom I learned to fly in a week!” We’ve all seen this on the cover of Popular Mechanics and I would love it if it was that easy. Unfortunately, if these marginally trained pilots experience displacement from “normal” or are startled, loss of control is a certainty. Even the most experienced pilots can fall into AOA traps. The video below is of an Air Force Thunderbird F-16 that suffered a very predictable LOC  problem. Watch carefully and see if  you can figure out why this happened (no one was severely injured here and the pilot ejected in time)

I often present this video at gatherings and call this “the perfect stall.” It demonstrates that even the most amazing military machine with endless power can’t make an airplane do the impossible and defy physics. Below is a screen shot that looks like a “fly by” – but in a static picture AOA is invisible – it takes motion and trend of a video to reveal the 7G stall.

And the question we left you with in last week’s blog; What is the AOA device installed in every airplane? AOA corresponds with how much chrome you see on your yoke (how far you are pulling back); and how much back pressure you feel on the stick (right side up). “Unloading” (overcoming that dangerous “monkey pull”) allows the reduction of AOA and is the first step to recovery of control (or don’t go there in the first place). To me personally, this huge, universal AOA device is more obvious and compelling in an emergency than a small electronic AOA device hidden somewhere in a busy panel.  But there are many good Upset Recovery Schools for you to try this for yourself and decide while experiencing upsets safely.  There is also excellent technical guidance on LOC-I in our SAFE public resource center (available to everyone) and in the FAA Airplane Flying Handbook. We will have a full syllabus of skill-building maneuvers at our SAFE CFI-PRO™ Workshop at AOPA, October 2&3. Fly safely (and often)!


Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

Is “Cross-Controlled” Dangerous?

We discussed the turning stall in the last SAFEblog and revealed the (often surprising) fact that in coordinated flight, with lift equal on both wings, a stall simply falls away from the lift vector and is very benign. There is only a burble and a drop of the nose, but no rolling or sudden departure from controlled flight that many people expect (and fear). This maneuver is in the private pilot ACS and should be comfortable for every aviation educator. This maneuver not only builds skills and confidence, but also creates a powerful opportunity to promote the need for coordinated flight and the value of correct rudder usage. Since there is no spin tendency in a turn when we are coordinated, this has a super safety value to every pilot; it opens their minds and gets their attention. But we then need a method to achieve better intuitive rudder coordination.

There is lots of confusion about the airplane’s rudder and its function in flight.  Remarkably, when Rich Stowell surveyed pilots he found 70% thought the rudder was used to turn the aircraft. This is dramatically wrong and should be a wake-up call to every CFI. Quite simply, the rudder cancels unwanted yaw created by the adverse effect of ailerons, power application, or rapid pitching moments. Most commonly, the downward moving aileron creates yaw, pulling the airplane away from the desired turn direction with “adverse yaw.” This can be *very* pronounced in an older (often tailwheel) aircraft but is largely designed out of modern (control blended) aircraft. That is a nice way of saying modern planes mostly tolerate and disguise “flat-footed flying.” Unfortunately, moving the rudders appropriately and learning coordination is the key to safety and preventing LOC-I.

The critical skill is to anticipate yaw not just reactively cancel it after it has occurred. That’s why the advice “step on the ball” – though correct – is too late and creates more problems than it solves. “Step on the ball” means you already created the yaw problem – slewing the plane – and are subsequently forcing it back into balance with a time-consuming, mechanical input. People who utilize this advice not only have their eyes inside but also fly like bad robots in a jerky and uncomfortable fashion. In addition to being clumsy, we just do not have enough mental bandwidth while flying to be cogitating about “stepping on the ball” (which lags badly anyway). It is essential to tune up our kinesthetic yaw sensing and develop automatic anticipation of adverse forces. This will also makes you an amazingly smooth pilot that your passengers will appreciate.

I recommend all flight instructors (and pilots who want to get sharp) demonstrate (observe) a brisk application of power, aileron, or pitch applied independently at a safe altitude. In each case you will see the nose yaw in reaction to this force applied (physics in action).  With practice you can predict which way this will occur (physics!) and discern how much rudder to apply to maintain coordination. I have my primary students initially move the throttle hand and the right rudder together to develop some “muscle memory” while on the ground sitting in the cockpit (works for “chair flying too). This yaw correction will become automatic pretty quickly with directed focus and practice (but is much easier to teach initially than to correct from a bad habit). There is a lot more to this art of learning/teaching rudder and our SAFE CFI-PRO™ workshop has many time-honored CFI tricks to tune up rudder usage.

“As the power increases, you’ll simultaneously press on the right rudder pedal knowing that the entire universe (specifically the airplane’s power induced left turning tendencies) is doing everything possible to yaw the airplane’s nose to the left. But you’ll have none of this nonsense because you are in command of your airplane, right? Right! So step on that right rudder pedal.” Stick and Rudder Mutter, by Rod Machado

But let’s get on to this “cross-controlled bogeyman” we started with. If after we demonstrate that turning stall we ask why the plane did not spin (as expected) in the turn the logical follow up question is “what would cause a stalled plane to spin?” And I guarantee the answer will be “if you stall when you are cross-controlled.” So I demonstrate a stable full slip (power off) and bring the plane to a stall. I love this demonstration, because though the plane is balanced and stable, every pilot anticipates a violent spin entry. In fact with a well rigged trainer, nothing at all happens (except the student finally begins breathing again). Another learning opportunity; why no spin? Because the slip configuration is stable (with no power) with the rudder yaw opposing aileron roll force (perform this only with an experienced instructor and know your plane). This illustrates that the obvious bogeyman is not “cross-controlled” but rather the pro-spin inputs of a skidding turn (ironically the force 70% of pilots think turns the plane) The skid is an excess rate of turn. This usually is created with the rudder but can also be uncompensated force from a go-around attempt (well represented in the NTSB files). The skid is the evil form of “cross-control” and often occurs when people fight yawing force inappropriately with aileron (“driving” again). If there is one aerodynamic principle every pilot must understand this is it; understand thoroughly the difference between a slip and a skid and why one is safe and one will kill you . This is the essence of safety in the pattern. More detail is in this Aviation Safety article I wrote.

Three incidents personally persuaded me to demonstrate these maneuvers and promote this understanding to every pilot. First was repeated flight tests where applicants did not want to “slip to land” because it was “cross-controlled and dangerous.” Then I discovered a website by a respected airline pilot (with great popular following and gravitas) that advised (completely incorrectly) to convert the base to final turn into a slip by applying aileron out of the turn as you lined up on final; “you already have the wing down.” This is of course a skid and very dangerous (pro-spin: do not try this!). The final incident was a young CFI applying for a job at our flight school who demonstrated a massive skid (intending to slip) and confessed he thought you “just cross the controls” to create a slip. This level of confusion is obviously killing pilots and needs to be corrected by every conscientious aviation educator. Again, more here.

Next weekend SAFE will be at the AOPA Fly-In at Frederick, MD (and we would love to meet you there). This blog will cover another misunderstood (and potentially dangerous) aerodynamic force; AOA, CG and pitch (“planes don’t stall, but pilots stall planes”) Fly safely (and often).


Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

Surprising Airplane Control Facts!

Presenting seminars at public events like Sun ‘N Fun is a fascinating opportunity to both meet people and also sample the aerodynamic understanding of our pilot (and CFI) population. Having been a DPE for many years, I often ask a lot of questions while presenting to get a sense of the understanding level of my audience. Reliably, 70% of pilots are usually confused about which control actually turns an airplane. Pilots (and CFIs) are unfamiliar with the actual aerodynamic forces at work on our wings during a basic coordinated turn. And no one seems to know that *every* aircraft has an AOA indicator installed – which every pilot controls. Let’s unpack a few of these ideas; because they are essential to the safety of every pilot and especially essential for every aviation educator to understand completely.

I usually ask audiences about the balance of lift on the wings of an airplane in a stable, level altitude turn:  In a level, coordinated 30-degree turn, is the lift equal on both wings?Please make YOUR choice at this point before going further.


Reliably, more than half of the pilots in every audience will say lift is unequal on the wings in a level coordinated turn. For an educator, this is the classic “learning opportunity” to present a startling follow-up question. If lift is unequal in a stable turn, wouldn’t your plane would still be rolling? Presented that way it seems to make sense to pilots; lift is equal on the wings. Inevitably, someone always posits that the outer wing has “more lift because it is traversing a longer arc” (over banking tendency). But obviously if this was true your plane would still be rolling. I think what confuses pilots is the asymmetric lift used to create the roll initially, and I think also (surprisingly) the flight attitude is still somewhat scary to many pilots since we all spend most of our time straight and level. The fact that 70% of pilots are confused is also an opportunity to improve the understanding of our flight training community (see SAFE CFI-PRO™) We have great tools for teaching this area of flight.

So simply prove this to yourself the next time you go flying. Roll into a 30 degree bank and add enough nose up trim (and a touch of power) to maintain a stable level altitude hands off. Fold your arms and smile; your plane will happily continue to fly in a hands-off stable turn until it runs out of fuel (assuming it is properly rigged). Every CFI needs to  demonstrate this stability and explain the underlying aerodynamics very early in pilot training. This is not an automobile or a boat and ignorance of essential aerodynamics is responsible for many LOC-I accidents.

The natural follow up question is of course, what will happen if we stall in a coordinated turn? This is a very powerful question for every aviation educator to ask (and demonstrate) as soon as a student is comfortable with straight-ahead stalls. Student pilots predictably grab the seat cushion and start to sweat when I first demonstrate a turning stall in an aircraft during training (despite a full ground briefing). >70% of pilots (and CFIs) predict a spin entry as the inevitable result of a turning stall. But if lift is equal on the wings (we are coordinated), a stall in a turn will very simply drop away from the lift vector. Try this with an experienced CFI and you will see that the stall break is even less pronounced than the straight-ahead stall. This is a way of expanding your flight envelope and proving to yourself how the basic aerodynamics of turning an airplane works. A turning stall is a very empowering maneuver for every pilot to experience. And the turning stall is an element in the private pilot ACS for this reason; it is an essential learning experience for safety and understanding.

And for that last mystery question; which control is active in a level turn? The ailerons are neutral in a 30 degree turn – take a look out at your ailerons while turning and try wiggling them. And the rudder is also neutral  – because all it does is “cancel the adverse yaw” as ailerons are added to roll the plane. The active control responsible for the turn is what you added with the trim; your elevator! And over 25% of pilots guess the rudder is turning the plane – and that would be a skid and responsible for pro-spin force – a dangerous assumption. The actual control responsible for turning in level flight is the elevator. A more complete explanation of  the aerodynamics of turning are on Rich Stowell’s “Learn To Turn” course on community aviation. The fact that pilots are confused here is one reason we are providing expanded education for CFIs during our  SAFE CFI-PRO™ workshop. A YouTube of Rich Stowell at the NTSB is available here.

The (largely unknown) AOA indicator we all have in an upright airplane is how much chrome is showing on your yoke (how far back you have pulled the yoke or stick). This will reliably show your angle of attack and also is the first thing to reduce in an upset – unload! Next week we will talk about the fact that planes don’t really stall – but in fact pilots are responsible for stalling planes.  Stay tuned – and fly safely out there.


Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (1/3 off your ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitate CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

SAFE CFI-PRO™ Released @ SnF!

Our SAFE CFI-PRO™ initiative was well received by the press and industry on April 3rd at Sun ‘N Fun and we had an  amazing show here in Florida. See all the industry visitors to our booth on our SAFE Facebook. There are many livestream videos from our booth with manufacturers like Piper, Cirrus, Lightspeed, Bose, Appereo and industry partners like Patty Wagstaff and Richard McSpadden.

We announced the date for our initial CFI-PRO™ workshop on October 2nd and 3rd at AOPA in Frederick, MD. This ambitious program is the ultimate expression of our SAFE mission of elevating aviation educator excellence. The purpose of these workshops is to codify and transmit the knowledge and skills that make a CFI professional truly proficient – far beyond the perfunctory FAA initial training. We are addressing the “CFI Gap” between “good and Great!” The heart of this workshop is our “Envelope Expansion Maneuvers.” We will present these in detail and explain the aerodynamics behind them. We hope to also fly them at the workshop so we can ultimately transmit these to every pilot at every airport (though our  CFI-PRO™ cadre) and expand pilot’s abilities to reduce the incidence of Loss of Control accidents.

There are great learning opportunities at this two-day course for every CFI. For new CFIs we will provide the “missing manual” of skills and techniques to elevate each educator from “good to great” taking you far beyond the FAA minimum standards. For the more experienced CFI we will reveal new and modern concepts of scenario-based training and testing and also focus on client-centered instruction. Everyone will also love the networking opportunities with some of the best educators in the country. A passion for excellence is energizing and a shared mission for improvement is  contagious.

What we mean by “expanding the flight envelope” is getting away from just scenario-based training and exploring flight outside the standard 5% “comfort zone” where we all fly. By definition “scenarios” are pretty tame flying. Envelope expansion maneuvers are non-operational, skill-building techniques and focus on full control authority. As an example, take a normal steep turn at the commercial level and reverse the heading after 180 degrees of turn. After you gain proficiency with this, reverse after only 90 degrees of turn. These 60/90s have been a standard tool of senior CFIs to build proficiency for many years.

As another example, perform a standard power off turning stall and recover in the turn without adding power – just reduce the angle of attack; what a confidence booster for both CFI and pilots. A normal turning stall is a required maneuver on the Private Pilot ACS but seldom taught by CFIs or well known by most students sent to a private pilot test. How about a power off stall in a full slip…what will your plane do? If you don’t know you are a good candidate for SAFE CFI-PRO™. We will cover the aerodynamics of this situation and also teach the maneuver in flight. You will become a more proficient CFI-PRO™. As we travel this program, we will depend on our growing cadre of professionals to spread these SAFE Expanded Envelope Maneuvers to other CFIs and our general aviation pilot population. Moving every pilot out of their complacent “comfort zone” by refocusing on confident “yank and bank” maneuvering is the antidote for LOC-I.

More people die in every sector of aviation due to LOC-I than to any other cause. The NTSB has been excellent at keeping this fact in front of the public until we figure out how to change the way we train pilots.” Realistically, however, Brooks adds, “If we look at how we spend our training time versus the LOC problem, there’s a huge gap, yet we continue training pilots the way we always have.”

The secret of success for SAFE CFI-PRO™ is teaching a syllabus of maneuvers that can be flown in a any standard part 23 training aircraft (no parachutes or exotic aerobatic planes required). This program is scalable to every pilot at every airport in the hands of a skilled CFI-PRO™ and ends up being highly effective at building skills. Pursuing an Upset Prevention and Recovery Course as the next step would be a great addition. Find more information here and please enter your contacts to receive more details as they become available. Registration will be available in about a month; stand by for a great educational experience.

In the meantime, fly safely (and often) and keep in touch. Together we are going amazing places.


Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (1/3 off your ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitate CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).