Keep it Simple; Angle of Attack!

In recent blogs, we emphasized a “perfect picture” for each new student and also how and why it is critical to break the driving habit immediately. A good educator is eliminating obstacles and building solid habits while embedding actionable mental concepts. And now it is finally time to go flying.

Though the physics of lift thankfully works, it is unsettling for pilots at all levels that the best minds in science are still arguing about what actually makes it work. Most books present 2-3 conflicting theories with associated passion – and mathematical smoke and mirrors. It can all feel like childhood church stories – and even has the same Greek letters. We create even more confusion by over-emphasizing terms like “stall speed.” This concept is in all the books and even painted on the airspeed indicator. Imagine the confusion when we subsequently reveal “a wing can stall at any speed!” It is no wonder that pilots at all levels very quickly demonstrate this mental muddle on checkrides if you start to press this issue. Pilots need basic, actionable information when discussing what enables wing lift or even creates a basic turn.

To this end, I think the best starting point for discussing lift is “angle of attack” (AOA). The basics are deceptively simple; AOA is the angle of the chord line to the “relative wind.”  If you take the complicated lift equation (with the Greek letters) and remove all the constants, what you have left is the relationship between the speed and AOA. And as we know, we control AOA with elevator inputs.

Purists may chafe at this simplification but if flying requires calculus to be safe, we have bigger problems. Every airplane with a yoke (or stick) has a pretty good angle of attack indicator already installed – you don’t have to spend extra money or stare inside at LEDs. The more chrome you see showing on the yoke, the higher the angle of attack. If the yoke (or stick) is held all the way to the backstop, your plane is either stalled or at the highest (positive) angle of attack the manufacturer allowed by design.

“The position of the stick merely fixes the Angle of Attack and the airspeed at which the airplane flies as it descends.” Wolfgang Langewiesche Stick and Rudder , An Explanation of the Art of Flying.

“Relative wind” and AOA are invisible to the pilot, so a major misconception that must be actively purged and continuously discouraged is equating flight attitude with the angle of attack. This misconception seems almost intuitive in our minds and is subconsciously reinforced by diagrams like the one above. As educators and pilots, we must continuously emphasize (and remember) that a higher nose is not necessarily a higher angle of attack, and the nose does not have to be up high to stall a wing. One creative way to demonstrate this on the ground with diagrams is to present the same angle of attack in different flight attitudes:

That is exactly what the classic Aerodynamics for Naval Aviators does in a less colorful diagram. And though pictures have great value on a cognitive level, it is essential to fly to the edges of the flight envelope and experience these configurations. These do not have to be terrifying and are easily accomplished in a standard trainer.

In early training CFIs emphasize a concept called “stall speed.” This number is in all the POHs and even marked on the airspeed indicator. Then in the next breath, we explain a wing can stall at “any speed and any flight attitude.” If we do not carefully and fully explain all this, it is no wonder most pilots are confused (as are the instructors). Questions on a flight-test, at any level regarding stalls or AOA can quickly go sideways with poor preparation and understanding. It can help to play a few revealing YouTubes (I call this one the “perfect stall.” How did an F-16 stall while pointed down at the earth?

Carefully chosen YouTubes (I call this one “the perfect stall”) can be very helpful in creating a better understanding for your pilot-in-training. First comes “cognitive dissonance: “How is it possible to stall an F-16 while pointed straight down at the earth?” Then comes understanding (hopefully). Damn physics!

Another way to empower understanding is by demonstrating different pitch attitudes with the same AOA, and then different AOA with the same pitch attitude. This kind of practice disconnects these two concepts and creates more complete understanding. Both airplanes depicted below are at the SAME AOA (and same yoke position) but very different flight attitudes and configurations.  This nose-high flight attitude (scary for many pilots) and also the nose-low (incorrectly assume  “safe/comfortable”) have the same AOA. Safety is achieved by understanding that both are just as close to a stall – which could occur with any more pull/backpressure/AOA in either case.

“A wing is an odd thing, strangely behaved, hard to understand, tricky to handle. In many important respects, a wing’s behavior is exactly contrary to common sense.”  Wolfgang Langewiesche Stick and Rudder , An Explanation of the Art of Flying.

Once your training with different pitch attitudes progresses into stall demonstration and practice, students will assume that to stall the nose has to be UP and that the wing has to be flying slow (both serious errors). During initial training, we create benign 1G stalls and this reinforces the dangerous misconception that the nose has to be high to stall and that stalls only happen when the wing gets slow. We need to fix this huge (mostly intuitive) misunderstanding, to get to increase aviation safety.

The best method to teach stalls is to select a “too high” nose attitude (hopefully with a cloud reference). At this point, your pilot-in-training should know the Vy/Vx pitch references, so have them set and maintain a “too high” pitch attitude precisely and maintain this as the airplane deaccelerates. This maneuver will demonstrate the yoke continually moving aft (increasing AOA) to maintain the picture and more usefully achieve a stall. This is much more effective than the usual (and less helpful) “pull to the sky technique.” (BTW, an airplane that has leveled off in ground effect for landing is elegantly transiting this exact same range of AOA – except while “low and level.” Notice the yoke continuously moving backward while “flaring” creating this same ever-increasing AOA for a soft touchdown).

As students become more comfortable with stalls and recovery, demonstrate a full stall and maintain the excessive AOA while the nose drops though the horizon. Throughout this maneuver, the yoke is held all the way back (same AOA/wing stalled) as the nose falls and the flight attitude changes. Recover only when the nose has fallen through the horizon. Secondary stalls are also a great way to kinesthetically reinforce the larger flight envelope and demonstrate the danger of “nose low” stalls (and possibly experience stalls at some higher G load). After these demonstrations, AOA will become more apparent. These essential demonstrations are not part of the normal flight training syllabus or required in any FAA ACS, but they are critical to creating a safe and confident pilot.

It takes some time and a caring relationship to introduce stalls correctly and not scare a pilot-in-training. If your student has not yet mastered coordinated flight (especially during climbs) it is too early to introduce stalls. The result will be predictable (and your fully scared student will probably drop out). A much better use of early flight time is demonstrating stability in the aircraft due to the clever aerodynamic design. Trim for an airspeed and raise the nose demonstrating how the plane will return to the trimmed speed/AOA. Trim a speed and add/reduce power demonstrating how the plane will seek that same speed/AOA. At least half of private pilot applicants are not aware the tail “lifts down” (and some CFIs do not know this either) providing dynamic stability for an aircraft in flight. Once pilots understand the nose is the “heavy end” and that recovery will take care of itself they have a greater sense of confidence and understanding of the physics involved. Planes don’t stall capriciously, *pilots* stall planes! Just because a plane *can* stall in any flight attitude does not mean that it *will.*

All of these concepts are a huge load to assimilate during early flight training, so patience and meaningful repetition is essential to successfully navigate this rush of information and new experiences. I would guess of the 80% of pilots who drop out during flight training, more than half would identify being scared of stalls (introduced inappropriately and too early) as the primary cause. Fly safely out there (and often)!


Join SAFE and immediately get great benefits. 1/3 off ForeFlight. This savings more than pays for your membership and simultaneously supports our SAFE mission of increasing aviation safety.  Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed by SAFE specifically for CFIs (and is the best value in the business).

 

Minimum Hours = “Budget Parachute;” Sell Safety!

For GA, the FAA is permissive with “regulatory minimums.” Flight in Class G airspace only requires “1 SM, clear of clouds” – way low but “legal.” And for creating pilots, the FAA mandates only 40 hours to obtain a pilot certificate, another potentially scary number. This is only dangerous if it becomes a target for every “budget shopper” looking to be a pilot – and creates unrealistic expectations. If this person manages a 70% on their knowledge test and “lucks out” with a 70% effort on their flight test (mediocre on everything), they will “pass their private,” (and the FAA rules require the DPE to write a temporary). But their future safety is usually seriously in question. (see Dr. Bill Rhodes “Scary Pilot” Slideshare.) They are essentially jumping out of a plane at altitude with the “budget parachute!” They bought the cheapest, crappiest rig off the shelf (with no reserve) and are trusting their life to it. When you frame their choice in this manner, it clearly is not a wise buying decision – if you value your life and also your friends and family.

Obviously on a movie theme today…

Though this “budget shopper” received the same paper temporary as the person who worked much harder (and paid more), our “minimum pilot” is not receiving the same value as a properly prepared pilot. They numerically lack about 1/3 of the FAA recommended skill and knowledge and they are literally gambling with their life. I have been lucky enough to create a few amazing pilots with only 35 total hours in a 141 school. These are exceptionally rare people (3 in 25 years) and all the circumstances of weather and equipment worked out (lucky). The important point is regulatory minimums are not a goal to pursue in flight training, they are a bare regulatory minimum. If you are a pilot seeking training or an educator providing it, quality and safety are the goals to aim at. If a pilot persists in seeking faster/cheaper/easier, they may not be suited for this business of flying?

I was recently at Boca Raton with five corporate jets waiting to go due to the Christmas rush. All were holding for IFR releases into the saturated airspace. A locally-based pilot in a fancy piston twin was approved for a VFR take-off and entering the runway at an intersection behind the jets. He was instructed to “back taxi full length for take-off due to wake turbulence.” This guy needed five increasingly careful instructions to fully understand and execute this clearance. Quite possibly this pilot started out as our 70% pilot and never got any better. And this pilot was not a beginner but probably had been frustrating controllers and embarrassing his fellow pilots for at least 25 years…

There seem to be these two schools of thought throughout all of aviation: a passionate pursuit of excellence and the baser impulse of acquiring all the certificates and ratings as fast as possible for the least money. I know from comments that the readers of this blog are in the quality camp (as is SAFE) but “selling safety” is a huge challenge in our modern culture and we all face this challenge every day. Every FaceBook forum seems to be full of advice encouraging short-term thinking that powers this “race for minimums.” Framing this choice as an “investment in personal safety” (and the safety of your family) makes “selling safety” a lot more comprehensible to most reasonable “budget shoppers.”

Anyway, this leads up to a problem related to this “minimum training mindset” that is encountered increasingly during flight tests. How little can a pilot fly and legally comply with the “long student pilot cross-country” required in 61.109. If you “Google this” (as everyone these days does…) and interpret this regulation verbatim without proper background (the “budget CFI rating ?”) I guarantee you will get it wrong! The reg. from the CFR reads the same.

“Long” X-C for private in 14 CFR 61.109(a)5(ii)

If our student pilot took off and flew 40nm straight north and landed; then 80nm straight south over the starting point (and landed); then finally back home all with 3 full-stop landings  (a neglected detail) would this flight qualify for 14 CFR 61.109(a)5(iii)? And the answer is NO. The hidden problem is in the definition of “cross-country.” For a student pilot, 14 CFR 61.1(b)3 requires a landing >50nm from the starting airport or this flight is *not* a “cross-country” (for a student pilot). As soon as a reg says “cross-country” in the training world, >50nm is required. Read the Keller Letter of Interpretation for a full explanation. This requirement seems to be increasingly fuzzy throughout the industry (three DPEs I called got it wrong). The bottom line though is “why cut corners in training? Pursuing “flight training minimums is a “race to the bottom.”

When I see the absolute minimum time on an application, I want to ask “do you really like to fly?” I might be “pissing into the wind” here but what about making really fully competent pilots, prepared even beyond the minimums on the ACS test – people who can really fly? In an amazing seminar I once attended, Greg Brown (yes that one, the first Master CFI) called this approach “fantasy flight training” but not in a pejorative way. He “sold” this idea as a reasonable approach for some people. For others, some level of “better” is the best sales pitch because these people want to be better and safer! Don’t you think this approach would improve our GA accident rate and the quality of our whole industry? Please share the “budget parachute” analogy with your next “budget shopper” and LMK if that helps? Maybe a large Terminator poster with a big gun advising “buy quality training if you wish to live?” We’ll get back to “Lesson #3” next week and talk about the AOA indicator that *every* plane has. Fly SAFE out there (and often)!


Join SAFE and get great benefits. 1/3 off ForeFlight more than pays for your membership and supports the SAFE mission of increasing aviation safety by promoting excellence in education.  Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed by SAFE specifically for CFIs (and is the best value in the business).

CFI-PRO™ Conquer the “Driving” Habit!

Every subtle movement of a pilot (or missed action), if watched carefully without intervention, tells a huge story to an alert CFI (or DPE). The most revealing is probably the first take-off; game on! Going beyond all the (very important) checklists and line-up prep, watch the initial power application very carefully. Many new pilots, and even some experienced ones, apply yoke and aileron to the right as the plane pulls left with initial power application. Call this out and reduce power immediately – start over and do this correctly. This pilot is still “driving!” This simple action reveals a multitude of sins (mostly deficient flight instruction). And this is “perfectly natural” since we all drive much more than we fly. This mistake is so basic and so wrong that this pilot’s flying in every other area is going to have serious problems. BTW, DPEs on a flight test, do not/cannot intervene here; this is not a violation of standards. (They just watch and take notes; never teach). The CFI is the source of excellence and great flying technique (or not).

Another place where”driving” is obvious is while making a simple level turn at altitude. Hopefully, we all visually clear in the direction of turn (and I teach a verbal “clear left/right” to stay honest). But if your pilot continues to look over their shoulder in the direction of the turn as they add aileron (turning into Walmart?) the nose will usually be swinging one way or the other with too much or too little rudder. It is essential to initiate a turn, with your eyes directly forward over the nose to perfectly cancel the adverse yaw of the aileron application. This is super simple and very basic but requires correcting the “driving habit.” A level turn is even worse when people are “playing soccer” and watching the inclinometer. Try this visual trick immediately if you haven’t and you will see your flying improve immediately. Rod Machado has a great YouTube here to illustrate the correct way to bank with eyes straight out over the nose: https://youtu.be/UV8xcm5xsuo

The beauty of this correct visual cue out front (established on lesson #1) is that every pilot will get perfect turns, in every plane they fly, the first time! This includes gliders, big hairy-chested tailwheels or even jets; it works! And your poor pilot in the left seat never learned this because unfortunately, no one taught them correctly. They are looking in the direction of the turn (where they already cleared) like they are turning into the MacDonald’s drive through. It is certainly fine to take a glance to clear again after the turn is established, but please watch the nose for the roll so coordination is perfect.

Why their CFI did not demonstrate and fix the “driving habit” on lesson one, or detect and fix this problem later is unforgivable. This poor pilot is still laboring under a completely wrong control paradigm. On take-off, not only is this control input not going to move the plane to the right with yoke right, this error is going to introduce multiple adverse effects on the rotation that are going to make the whole job of piloting harder. Many loss of control accidents happen right on the runway for this very simple reason.

A perfect take-off is much harder than most people think (and remember >24% of fatal accidents happen on take-off and initial climb). Watching a take-off from the right seat is a very large “tell.” First, there should be a smooth application of power (tracking perfectly straight with rudder) and all the cross-checks complete (while maintaining control). Then a smooth rotation straight up to a known outside sight picture with no wiggle/waggle and over-control (how many times do you see this go well?) But take-off can be fully taught and mastered by lesson #3 if it is introduced correctly. A fully mastered take-off is a great opportunity to motivate your student by turning this operation completely over to your student; “you got this!” (incremental mastery) Unfortunately in many cases, I see even “experienced pilots” that cannot make this happen consistently. This is a failure of instruction.

Early “drive-in-the-sky” ads didn’t help!

Here are a couple important exercises to break the “driving habit” and make your “aircraft operator” into a pilot. First, ensure the correct seating and fit in the plane to ensure a “perfect picture” as described in last week’s blog.  As you taxi, add and remove the power to make sure your client is correcting right and left with the rudders only (have them sit on their hands the first few times – new pilots often feel “out of control” without their “hands on the wheel”). It is important to speak directly to this “driving problem” immediately to defeat it and make it cognitively obvious to them. Every pilot will have to self-correct in the future. We all will drive to and from the airport; they must be aware so *they* can suppress this urge in the future.

On the runway, ready for take-off (after all the pre-checks and ready for power application), demonstrate the effect of power application: “your plane pulls left every time (physics!)” Also strongly emphasize the need to simultaneously apply right rudder *with* power application. Many pilots *react* with rudder and see-saw their “yaw and correction.” An ideal smooth application of BOTH power and rudder holds the centerline nicely.

As the nose is rotated, MORE rudder is required (and actually a little left aileron to correct proverse roll). Emphasize the control pressures necessary to hold wings level and nose straight (eyes outside initially then perhaps “tuning” with the ball). Pretty soon your client’s take-offs will be smooth and straight; under control every time. There are lots of forces at work here and they should be dissected and explained thoroughly during a ground discussion. This training is ideally presented on lesson one and two and pretty well mastered by three and four. But I have had to perform this “deconstruction” with very experienced pilots to break bad habits (and that takes a lot longer). Fly safe out there (and often)!


Join SAFE and get great benefits. You get 1/3 off ForeFlight and your membership supports our mission of increasing aviation safety by promoting excellence in education.  Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed by SAFE specifically for CFIs (and is the best value in the business).