New Tech: Accurate Fuel, Envelope Protection…

The number one reason aircraft end up in the weeds is still lack of fuel to the engine(s); starvation or exhaustion. The gauges on small planes have always been unreliable and estimates are subject to error and “excessive optimism.” I am sure that you, like every other pilot trained, have been counseled repeatedly “never trust your fuel gauges.” And this is for the very good reason that their reliability has been terrible. (and there are easily explainable reasons for the inaccuracy)

One of the many blessings of new aircraft and associated technological advances is the amazing accuracy they demonstrate when fueling (provided you input the new data correctly!) We now often verify a top off to within a tenth of a gallon of the gauge reading. For older aircraft, CiES, an innovative company based in Bend, Oregon, has developed highly accurate, reliable magnetic field fuel quantity sensors STCed for installation in just about every GA aircraft. Their testing data and verification of accuracy and durability is amazingly comprehensive. If you honestly want to manage the #1 risk factor in your flying, installation of accurate fuel gauges is hard to ignore. But how will our industry react to this news?

I can bet many pilots and educators will continue to preach “never trust your fuel gauges.” And though I certainly would agree with that advice if they mean trusting as a single source of data, wouldn’t it be great comfort to finally have an accurate, reliable depiction of acutal fuel on board to compare with a calculated estimate (to filter out gross errors)?  Of course we also know the tragic irony is that despite absolutely accurate fuel readings, pilots will still continue to run out because they can cut their margins even closer (hard to defeat human “ingenuity”). Has anyone out there tried these new units and can offer a testimonial? Even the 1946 bobber in my 7AC Champ is nervous.

Another bit of tech wizardry in modern planes is the “envelope protection” initiative from Garmin and Avidyne built into new airframes (just when SAFE is advocating for pilot “envelope expansion” practice for safety).

I was instructing commercial 720 steep turns for a multi-commercial add-on in a DA-42 and the machine made it clear 50 degree banked turns were “unacceptable” for “normal operations.” The servos (auto pilot off) kept nudging the stick back to level. It took a little digging in the manual to discover the the setting in the G-1000 to disable this feature (continuously operational even with autopilot off). Better guidance from Garmin is here and for Avidyne systems here. Until I learned more I had a “Max-8 MCAS moment.” And even with the control servos disabled the alarms go off to let you know you are “too steep” with aural warnings. It’s a brave new world out there with something to learn everyday. Fly safely (and often).

Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

“Artful” Control Usage; Pattern Precision

Rudder use in climbing turns is critical to safety in the pattern!

Flying around the pattern with perfect coordination is more difficult than most pilots think. Its also essential to safety because this is where the majority of accidents happen either from collisions or loss of control. Aviation educators must be insistent on thorough understanding and proper control usage if we are going to make better, safer pilots.

The correct actions and control pressures required in the pattern often go against what initially seems “natural” to new trainees; their “naive rendition.” Aviation educators need to patiently unpack and overwrite naive assumptions with correct theory and control usage. These are “trained responses” and require lots of practice to become embedded, implicit scripts that are constantly ready for use by the savvy pilot. There are lots of negative transfers from our more common transportation activity; driving.

Every educator will get arguments that mastering the correct control application is unnecessary because what they are doing “already works” or they will correct sloppy control later; neither is true. The basics must be mastered early and practiced often in flying or you have embedded a ticking bomb in your procedures that will surface later when a critical surprise situation requires immediate and accurate control skills to save the day. Marginal performance from power loss or density altitude challenges can suddenly require us to squeeze every ounce of performance from our aircraft. For safety and efficiency we need to unpack some of these less studied effects and work to master correct coordination.

A common example of “instinctual control” is seen in new pilots on initial power application and rotating to climb for take-off. These new learners counter left yawing tendencies with aileron;  a powerful negative transfer from driving. Many experienced but rusty pilots still exhibit a trace of this incorrect control input. Correctly canceling the yaw with rudder is a trained response that has to overwrite “intuition” and driving habits through continual reinforcement. With practice, the nose should rise straight and steady to a know climb attitude with outside reference and rudder pressure canceling yaw. (Extra points are awarded for not wagging left and right as the climb progresses) As the plane leaves the ground and starts climbing, some even more subtle control pressures are necessary to stay coordinated.

After rotation the pivot point for elevator shifts from the wheels to the CG point (forward of the wing) so a release of back pressure (lower nose) is required (nosewheel plane). Additionally, the increase of induced drag upon leaving ground effect requires a subtle relaxing of back pressure. The proper climb picture required should be memorized and acquired with visual outside reference. The view outside will also allow a pilot to see that left aileron is necessary to keep the wings level in the climb. Right rudder pressure causes a proverse roll to the right (more prominent in some planes than others). This subtle force surprises even experienced pilots when it is pointed out. Climbing coordinated requires some cross control pressure to keep the ball centered and the wings level; “cross-coordinated.” In the proper configuration, most planes exhibit 15% greater climb rate when correctly coordinated on the takeoff since they are stramlined and more efficient. (Try gliders to experience how necessary proper coordination is to performance) Though 300-700 HP can pull almost anything airborne even sideways, bad coordination in emergency situations is the killer. It is amazing that 24% of fatal accidents occur on the take-off and initial climb. Many pilots just don’t value all the challenges here – “hard to miss the sky!”

During the initial high-power, low-speed climb, most singles require right rudder pressure to center the ball. This induces a right rolling moment. Left aileron input against the right rudder is subtle but necessary to keep the wings level as the ball is centered. Once the plane is “subtly cross-controlled” in this manner, it will climb much better because drag is minimized.

The standard left crosswind turn in the patterm  is an even greater challenge to keep properly coordinated for new pilots; right rudder is required! Recent accident data indiates the climbing crosswind turn in the pattern may be even more dangerous than the well known base-to-final turn. Pilots turning left in a climb usually don’t apply the proper right rudder pressure to cancel the prominent left-turning forces since is initially “so unnatural.” As mentioned in many of these blogs, flying well requires many counter-intuitive trained actions to be safe. Remember, since both wings have equal lift in a stabilized turn, and the left-turning tendencies are still present and require right rudder – we are still climbing! Unfortunately, many pilots skid around their left climbing turns (standard right-hand patterns would be safer for control). Pilots who have tried chandelles – a more extreme climbing turn – are very familiar with the cross-coordination concept here. But even in less extreme left crosswind climbing turn, right rudder is essential. But why is flat-footed flying dangerous here?

In skidding turns, the force of roll and yaw are both acting in the same downward direction; they are coupled and adverse in effect – pro-spin. And when pilots inappropriately counter this skidding force in a climbing left turn with more aileron, this incorrect control application increases the angle of attack on the lower, slower wing. This makes the lower wing more likely to stall first and tuck into a spin. This illustration from Bold Method provides a depiction of the many problems with a skidding turn. Correct control application must be taught relentlessly by a committed aviation educator and studied carefully by the pilot in training to become an embedded habit. And this is particularly hard to master since it is a llearned action that is initially completely counter-intuitive. But anything less is clearly unsafe.

The skidding turn seems to be always depicted in a nose low, base-to-final turn in the pattern. This is where pilot action creates the skid with rudder to inappropriately increase the rate of turn. But you will see far more skidding turns in a climbing left turn if you pay attention. The skid here only requires pilot inaction. All the powerful left-turning tendencies create the skid that must be corrected by pilot action. These lef-turning forces must be actively countered with right rudder to prevent a skid. This dangerous tendency is especially common in bigger planes and more powerful engines in the climbing turns. Do the math and you can discern that this is often demonstrated by the “captain of industry” – an affluent step-up client who bought a big new plane. This person is allegedly a “trained pilot” but often really requires remedial instruction to be safe. The professional aviation educator must be firm here to address and fix these coordination problems. Acquiescing to poor control or bad technique is unprofessional and unsafe; it’s how we are losing control in our aircraft every day. Fly safe out there (and often)!

An appreciative nod to Michael Maya Charles and his amazing book “Artful Flying” (SAFE members get 20% off) which continues to inspire me daily. Flying well is more than just being safe. It is the daily joy of pursuing excellence in aviation; flying artfully!



Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).

Teaching Landings More Effectively!

I recently spent a beautiful evening watching students in the pattern challenging their young instructors and abusing their aircraft. Almost every approach was clearly defective long before getting anywhere near the runway; inconsistent configuration, altitudes or ground track; and poor airspeed control with “lucky line-up.” Despite all these obvious problems they all continued to an “arrival” that also kept the lawn mowing crew nervously looking over their shoulders. Without any mastery of the critical sub-components necessary for landing they continued grinding out (and reinforcing) more errors all the while beating up the equipment and hoping for some kind of magical improvement – remember that definition of insanity? And 56% of accidents occur in the pattern – where we spend only 5% of our time. This lunacy also discourages and drives away many students with an assault on their self-worth and sanity. There is an easy remedy here and it is not complicated. It does however require a “culture change” (which can be difficult). We need to teach landings later  in training – and only after full mastery of the required basics. And instead of only teaching landing in their final form, try some “centerline slowflight.”

The common joke among flight instructors is that the only maneuver we actually teach is landing. This is partly because (if we are honest) most pilots are unable to consistently land well (except me?) But this joke is also true because “landing well” incorporates almost every aircraft control skill – plus judgement and risk management- with time pressure, low altitude and ego. Ironically, the critical importance and focus on landing also results in landings being taught very poorly during initial training.

Most schools and instructors teach landings way too early and only in their final form. They begin landing before the individual components have been mastered by the pilot in training. Usually this is a misguided attempt to motivate the pilot in training and demonstrate “fast progress” and success. But many times there is a worse motivator;  an ego-boost for the instructor or image-builder for the school demonstrating low-hour “success” (scare quotes because the specious low standard).  Unfortunately what usually happens is that the new duty of the CFI becomes “protecting the plane” while the student “figures it out” with a series of frustrating “hints and near misses” that I was witnessing. Is it any surprise young CFIs run for the airlines? Is it any surprise 80% of students drop out?

Dishonesty in teaching landing often starts on the first flight (and with the best intentions).  We have all heard (or said) “You landed on that Discovery Flight – See how simple that was?” (I once thought this was helpful myself- duh!) This dishonesty actually seriously damages the total process of learning to fly and results in many problems later. It can actually be a major cause of students quitting; “If it is simple why can’t I get it? – I must really suck at this!” It is so much better to begin the flight training relationship by honestly stating “learning to fly well requires hard work and commitment but the satisfaction and payback are incredibly worth the effort. Landing well is neither simple nor easy and pilots will probably spend the rest of their life mastering and refining this skill set.” We humans actually love challenges but only if there are clear, manageable steps and the results are demonstrably worthwhile (the *are* in flying). With proper guidance, students master landing more easily – in less time and ultimately more thoroughly – if they start later with “incremental mastery.

To start correctly, it is essential to carefully define and demonstrate that the objective of a “safe landing” looks like – on speed, on point in the proper landing configuration, etc. It is necessary to burn the media hype of “the greaser” and all that associated crap. Aim instead for a manageable, safe, landing with consistent, attainable, goals. A full explanation of all the skills and components gives motivation for working hard and incrementally mastering ground tracking, speed control and configuration changes when you are practicing together out of the pattern. Only after your pilot in training takes over all these essential components (see incremental mastery) are you are ready to begin “pattern work.” YOur pilot in training must earn landing practice by demonstrating mastery (not just because the clouds are low on the third lesson and the CFI has to pay rent). A relationship of trust in essential in this process because if your student imports all the crap they see on YouTube they will make this process longer and qeven more “exciting.”

Once in the pattern, I enforce the “rule of three”  – and transfer this to students as a necessary tool. This is simply calibrating the evaluation skills every good CFI already possesses. To be successful (and safe) the learner must see and remedy “high/low, fast/slow, not configured”  and terminate their attempt with a go around if necessary. The pilot in training must have evaluation skills too. There is absolutely no advantage to a continuing with a “salvage job” or accepting the landings I was watching. Even though the CFI is (usually) able to do salvage most landing attempts, we also fix way too many ugly landings for students and set a bad example. Whenever there are consistent deficiencies with basic aircraft control these issues need to be resolved before attempting further landings (otherwise we are practicing and reinforcing errors). It is essential to disassemble the bigger process (final form) into manageable elements that can be mastered safely at altitude then reassembled for success; e.g. once airspeed and ground track are functioning we can continue in the pattern productively.

Pilots in training master aircraft control at altitude first and progressively gain confidence and control at lower altitudes. Once slow flight has been mastered at altitude, bring it into normal pattern practice by flying down a long runway ground effect at approach speed. This is remarkable helpful and should occur before any landing practice with the specific goal of precise centerline control at progressively lower altitudes. In a few passes most students can track right down the line at 3-5 feet in ground effect (a skill that is still lacking after endless touch and goes) Achieving this kind of control through centerline slowflight is a trick used by every experienced aviation educator I know. Unfortunately, they usually only bring it out for “tough cases” as a “method of last resort.” YOu will be surprised how effective it is for every student (before landing practice).

Every CFI needs to be comfortable with centerline slow flight and it should be part of every normal student syllabus. This maneuver builds  confidence in your learner and overcomes “ground fear” for new pilots in training. It also builds the subtle control feel and visual cues for the bouancy of ground effect that contain 90% of the secret to effective landings. One huge psychological advantage to centerline slow flight is removing the expectation of landing that seems to be built into every pilot. Flying a series of low passes builds mastery of the go-around as a viable and safe “escape option.” This maueuver also saves wear and tear on the training aircraft and makes the subsequent teaching of a full landing a snap.

Once centerline slowflight is mastered, it is almost magical to train landing from a slow flight a lesson on a longer runway. Simply slowly reduce power as your pilot in training holds their sight picture in ground effect. Surprisingly your student has landed before they know it; tracking straight on the centerline without even expecting it. All you have to do is fully reduce power on touchdown ( a crutch you obviously want to later remove). It is simple to adapt and adjust this procedure to become a normal approach and landing. The steps now to landing are easy because all the necessary skills are there; no semi-crashes and “protecting the airplane” arrivals. How many pilots screw up landings because they are uncomfortable in ground effect or trying to “make it land” rather than “waiting for touchdown” with the perfect set-up? This and more useful techniques will be part of our  SAFE CFI-PRO™ Workshop at AOPA, October 2&3. Fly safely (and often)!

Apple or Android versions.

Join SAFE to support our safety mission of generating aviation excellence in teaching and flying. Our amazing member benefits pay back your contribution (like 1/3 off your annual ForeFlight subscription)! Our FREE SAFE Toolkit App puts required pilot endorsements and experience requirements right on your smartphone and facilitates CFI+DPE teamwork. Our CFI insurance was developed specifically for CFI professionals (and is the best value in the business).